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1. Introduction

Two elements (subgroups) of a group G are called conjugacy separable if they are
conjugate in G if and only if their images are conjugate in every finite quotient of
G. The whole group is termed conjugacy separable if each pair of its elements is
conjugacy separable.

Conjugacy separable groups form a rather complicated class of groups. It is
closed with respect to forming free products but not under taking subgroups,
forming extensions and wreath products [8]. Restriction to the class of soluble
groups does not help either. The best known result, the Theorem of Formanek [1]
and Remeslennikov {7] yields that this class contains all polycyclic-by-finite groups.
These groups also have all subgroups conjugacy separable (Grunewald, Segal [2]).

In this paper we will prove conjugacy separability of elements and subgroups for
a class of not necessarily finitely generated nilpotent groups of finite abelian section
rank. Some examples will show that there is nearly no general way to extend these
results to a wider class of groups.

Regarding conjugacy as an operation of a group on itself yields another way how
to extend theorems on conjugacy separability, which I found in a recent paper of
Hilton and Roitberg [3].

Let O be a group operating on a further group G. Two elements (subgroups) of
G are said to b Q-conjugate, if there exists an element g € Q mapping the first
element (subgroup) onto the second. They are termed Q-separable if they are
Q-conjugate or if there exists a finite Q-quotient of & in which their images are not
Q-conjugate. G has separable Q-orbits if each pair of its elements is Q-separable.

As usual Q is said to act nilpotently on G if it acts identically on the factors of
a finite Q-invariant series of G and almost nilpotently if it contains a subgroup of
finite index acting nilpotently on a Q-invariant subgroup of finite index of G.

Hilton and Roitberg proved orbit separability for finitely generated nilpotent
groups on which a finitely generated nilpotent group acts nilpotently. We will extend
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this result and prove subgroup and orbit separability for polycyclic groups, thereby
answering Question 1 of [3], and in the above mentioned class of nilpotent groups.

Before stating the precise results we need some further notation:

A group has finite abelian section rank if all its abelian sections (i.e. quotients
of subgroups) have finite torsion-free rank and finite p-rank for every prime p. The
class of soluble groups of finite abelian section rank is denoted by .%,.

The spectrum n(G) of a group G is the set of all primes p for which G has a
quasicyclic p-section. #, denotes the class of all residually finite nilpotent groups
G of finite abelian section rank with spectrum 7 the torsion factor group G/T(G)
of whicn is x-radicable, i.e. n"™-local. (So n cannot contain every prime.)

# . is the class of all torsion-free #,-groups and .7 denotes the class of all finite
groups.

The profinite topology, which is defined by taking the subgroups of finite index
as a basis of neighbourhoods of the unit element, plays an important role in the
proofs of this paper. Its properties in #,-groups have been described in [6]. Any
topological term is used with respect to this topology unless it is stated otherwise.

Many arguments and ideas of this paper are based on Grunewald and Segal [2],
but they must be applied carefully to #,-groups and must be improved as #,-
groups may have non-closed subgroups, which cannot occur in polycyclic groups.

Notation used without explicit definition may be found in Derek Robinson’s
books [9].

2. Results

Theorem A. The polyvcyclic-by-finite group G has separable Q-orbiis if Q is a
soluble-by-finite group acting on G.

By means of counterexamples Wehrfritz [12] showed that conjugacy separability,
and hence Theorem A, is not valid in nilpotent or finitely generated soluble minimax
groups,

However we can prove:

Theorem B. A v_ +-group G has separable Q-orbits, if Q belongs to #,.+ and acts
ulmost nilpotently on G.

We state the obvious conseqguence:
Theorem C. #~, ,-groups ue conjugacy separable.
The set of elements conjugate to a given element in every finite quotient forms

a single conjugacy class if the group is conjugacy separable. So for non conjugacy
separable groups one might hope to obtain a weaker finiteness condition stating that
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such a set splits only into finitely many conjugacy classes. Even this is not true for
torsion-free nilpotent minimax groups.

Example 1. There exists a subgroup G of the group U(3,Z[4]) of all upper
unitriangular 3 X 3 matrices over the ring Z[4] and an element b € G, such that the
set of elements of G, conjugate to b in every finite quotient of G, consists of in-
finitely many distinct conjugacy classes.

Is there a ‘common’ generaiization of Theorems A and B to residually finite
soluble groups of finite rank the Fitting subgroup of which is radicable by its spec-
trum? No, there is not, even not to minimax such groups:

Example 2. There exists a finitely presented torsion-free metabelian minimax group
G, the Fitting subgroup of which is 2-radicable, which is not conjugacy separable.
G even contains an infinite set of elements which are pairwise not conjugacy
separable. G has a linear representation of degree 4 over the ring Z[]=
{2"m|n,me}.

The group G of Example 2 is not Zariski closed in GL(4,Z[{]) and a positive
answer to the following question seems possible:

Question. Let R be the integral closure of Z[1/p | p € n] for a finite set 7 of primes
in an algebraic number field and G a Zariski closed soluble subgroup of GL(n, R).
Is G conjugacy separable?

Za iski closed sets are profinitely closed in GL(7, R) [13, Lemma 2]. Hence, [I1,
1.21] asserts that a maximal unipotent subgroup of G is n-radicable.

The restrictions to a finitely generated ring within an algebraic number field are
necessary: Wehrfritz has shown that the Zariski closed group

. . . 1 1 1
U2, R)A{diag(l, 2), diag(l, x), diag(l,2—-x)> with R=Z [x, 2% 2—}}

and an indeterminate x is not conjugacy separabie [14]. On the other hand we will
establish the following example:

kxample 3. Let R=Z[I/p|pen] where n contains every prime but 2. Then
U(2,R)/1{diag(l/s,s)]seR*} is Zariski closed in GL(2,R) but not conjugacy
separable.

We now go back to Theorems A and B and use the well known connection be-
tween separable and profinitely closed orbits to reduce the conclusions of these
theorems to statements on derivations which will also be used to prove the theorems
on subgroup separability.
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Let a and b be two elements of G which belong to the same Q-orbit in every finite
Q-quotient of G. Then b belongs to {),., @2G", which coincides with the closure
a? of a2. Thus we have to prove that the groups G have closed Q-orbits. Further-
more the map d:0—G:q—~a% ! is a derivation (i.e. d(q,9,)=d(q,)%d(g,)) so
that Theorems A and B follow from Theorems D and E, respectively:

Theorem D. The image of a derivation from a soluble-by-finite group into a
polycyclic-by-finite group G is closed.

For abelian G this theorem has been proved by Grunewald and Segal [2, Theorem
2]

Theorem E. The image of a derivation from a #,.7-group Q into a t/,.7-group G
is closed, if Q acts almost nilpotently on G.

Apart from orbit separability we want to get some results on subgroup separa-
bility in #,.7-groups. We start with an example showing that we have to replace
¥, by 7, to get a positive result:

Example 4. There exists a periodic #z-group of class two with non-separable
subgroups.

On the other hand, by looking at finite quotients, one cannot distiaguish a
subgroup from its closure. Hence, we have to restrict ourselves to closed subgroups.
Unfortunately, our proof needs a further restriction to almost isolatea subgroups.

We term a subgroup V of a #,./-group G almost isolated i1 its intersection
O F(G) with the Fitting subgroup of G has finite index in its isolator

Li\(VOFG) = {ge F(G)|dne N g"e VAF(G)}

in F(G) (compare [6,2.]).

Almost isolated subgroups of a #, #-group are closed [6, Theorem A}, and in a
topologically finitely generated #,.#-group, i.e. a #,.#group G, the Fitting
subgroup F(G) of which contains a finitely generated subgroup with isolator F(G),
every closed subgroup is almost isolated [6, 11.1]. Hence, the following two
theorems are true for closed subgroups of minimax groups in 7, *.

Theorem F. Let Q be a #,./-group acting almost nilpotently on the u,./-group G.
Then almost isolated subgroups of G are Q-separable.

Again we state the obvious consequence on conjugacy separability:

Theorem G. Almost isolated subgroups of #,.#-groups are conjugacy separable.
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The following examples show that we must not omit the hypotheses nilpotency
and radicability by the spectrum in the above theorems:

Example 5. There exists a residually finite nilpotent minimax group with infinitely
many pairwise non conjugacy separable subgroups.

Example 6. There exists a finitzly presented residually finite metabelian minimax
group, the Fitting subgroup of which is radicable by its spectrum, which has in-
finitely many pairwise non conjugacy separable subgroups.

Finally we state the obvious generalization of Grunewald and Segal’s theorem on
conjugacy separability of subgroups of polycylic-by-finite groups:

Theorem H. Under the action of a soluble-by-finite group Q a polvcyclic-by-finite
group G has Q-separable subgroups.

Theorem D and Theorem E are proved in Sections 3 and 4, whereas the proof of
Theorem F covers Sections 5-7. Section 8 contains some remarks on the proof of
Theorem H. The examples are verified in Sections 9-12.

3. Proof of Theorem D

We state two lemmas concerning a derivation d from a .74 #-group Q to a .7y.7-
group G on which Q acts. The first lemma can be verified by simple computation.

3.1. Lemma. Ler P be a subgroup of finite index in Q and U a Q-invariant
subgroup oy finite index in G. Then we have:

(@) d~"(U) is a subgroup of Q.

b Q:d '(U)isiG:U|.

(c) d is continuous.

(d) i d(P) is closed in G, so is d(Q).

Theorem D has been proved by Grunewald and Segal [2, Theorem 2] for abelian
G. The general case follows by induction on the Hirsch number of G. The induction
step in which we choose M to be a maximal abelian Q-invariant normal subgroup
of G is verified by the next lemma.

3.2. Lemma. d(G) is closed in G if there exists a Q-invariant normal subgroup M
of G such that

(1) M"d(G) is closed in G for every ne .

(2) d(d~ (M)) is closed in M.
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Proof. Let b belong to d(G). For every ne N we find elements g, € Q and m,e M"
such that b=m,d(q,). Now

m, = bd(q,) ' =m,d(q,)dq,) ' =m,dqg,q )"
asserts
mye [} Mdd (M) =dd '\ (M)")=dd ' (M)") (2.

ne™

Thus there exists an element ge d~'(M)< Q satisfying d(g)? =m, and we get

b=md(q,)=d(@)"d(q,)=d(qq)).

4. Proof of Theorem E

Following 3.1 we may assume Q and G to belong to #, and Q to operate
nilpotently on . We prove the theorem by induction on the length of a central
series of G the factors of which are transformed identicaliy by Q.

As G is a Bausdorff group,

C=Cy)Q= ﬂQ{geZ(G)lg"=g}
q€
1s a closed subgroup of the centre Z(G) of G. [6, Theorem R] asserts that C" 1s
closed in Z/G) and in G for every natural number m. Thus G/C™ beiongs to #,
{6, Proposiiion G] and C"d(G) is closed in G by induction.

As d is continuous (3.1) d'(C) is closed in Q and hence belongs to /7, [6, Pro-
position G]. Now dld 1y is @ homomorphism, so that d(d “1(C)) is closed in C by
[6. Proposit:on G). Thus the theorem follows from Lemma 3.2.

S. Proof of Theorem F (first part)

5.1. Lemma. Let Q act on G and P be a subgroup of finite index in Q. Two
subgroups A and B of the subgroup H of finite index in G are Q-conjugate in every
finite Q-quotient of G if and only if AY and B are P-conjugate in every finite
P-quotient of H for some qe€ Q.

Proof. (Compare [2, Corollary 1*].) Let {q,=e, ¢>,...,q,} be a complete set of
left coset representatives of P in Q. Take any P-invariant normal subgroup N of
H of finite index in H. N contains a Q-invariant normal subgroup of finiie index
in G. Thus there exists a number i€ {l,...,n} and an element py € P such that

A%PSN = BN. (1)
There exists an element je {1, ..., n} such that (1) is true for every N: Otherwise for

every ie{l,...,n} we could find a subgroup N; such that (1) is false for every
peF. But for N= ﬂf’ . V; statement (1) gives a number k and an element py € P
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such that A“’"N=BN. Now A%’ N;=AN"P NN, = BNN,=BN, presents a
contradiction.
Because of (1), A% is contained in H.

5.2. We prove the theorem by induction on the Hirsch number A(G) of G, which
we may assume to be positive. Let U and V be two almost isolated subgroups of
G. Denote by P the #,-subgroup of finite index of Q which operates nilpotentl/
on a Q-invariant normal #,-subgroup N of finite index in G.

C = Cyx)P has positive Hirsch-number and is isolated in N as Z(N) is isolated
in N [8, 2.25] and uniquely n-radicable. Thus N/C belongs to #, [6, Proposition
G)] and G/C"™ to #,.7 for every meN. By induction we may assume UC™ and
VC™ to be Q-conjugate for every me N, i.e. for every me N there exists g,, € Q
satisfying

uaCc"=vC". (1

We may assume q,=e. L=UC is closed in G, and so is R=NyL which conse-
quently belongs to #,.# ([6, Propositiorn G]). Obviously R contains the elements
qn. SO that U and V are R-conjugate in every finite R-image of L and we may
assume Q=R and G=L.

We now verify that

X=UNC andY=VNC are Q-conjugate. )

It follows from (1) that X and Y are Q-conjugate in every finite Q-quotient of
G. Thus for some ge Q X" and Y are P-conjugate in every finite P-quotient of G
(Lemma $.1). But P acts trivially on X9 and Y and both subgroups are closed, so
X9 equals Y.

In the remainder of the proof we distinguish two cases:

(n X=(1) (split case),
) X#(1) (non-split case),

and finish the proof for the second case:

We may assume X =Y. Now P, = NoX and H=NgX have finite index in Q and
G respectively, so that we can find an element g€ Q such that U? and V are
P,-conjugate in every finite P,-quotient of H (5.1). Thus U9/X and V/X are
P,-conjugate in every finite P)-quotient of H/X.

Now X is almost isolated in N, so that the torsion subgroup of N/X is finite and
G/X belongs to #,.7. (This is the only part of the proof where we need U and V
to be almost isolated instead of closed.) By induction there exists an element he H
such that (U%/X)'=V/X. Hence we have U% =¥ which proves the ‘non-split
case’.

The split case needs some further preparations. In this case U and V are com-
plements of C in G and we have to prove that complements which are Q-conjugate
in every finite Q-quotient of G are Q-conjugate.
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It is a well known fact that the complements of C in G are in 1-1 correspondence
with the elements of Der(U, C), the abelian group of all derivations from U into C.

In Section 6 we investigate this group and finish the proof of Thecrem F in Sec-
tion 7.

6. Deriva® s

Let G = UC be a Q-group with C<G and UNC =(1). The set of all complements
of Cin G is denoted by 7. For K€ # and g€ G we write g = gx g ¢ for the unique
elements g, € X and gx € C. The following two iemmas are well known and easily
verified by direct computa‘ion (compare [2, 1.]).

6.1. Lemma

(Der(U,C)— /
f'{ d ~{udw)|ue U}}
and
h.{/-* Der(U, C) }
(K erdiu—(ug ) !

are bijections and inverse to each other.

6.2. Lemma. Q acts on Der(U, C) via d¥(u) = d((1" I)U)" and
D EQ—’Der(U C)}

g~ hU)

is a derivation.

We want to apply Theorem E to the above derivation and verify the necessary
hypothesis. More generally we state:

6.3. Lemma. For an arbitrary set n of primes we put R =Z[1/pi penmn). Let H be
un . »~group and W a right RH-module, which is a torsion-free abelian group of
Jfinite rank. We also suppose n(H)c n(W)=n.

(a) Der(H, W) allows a natural R-module structure: nDer(H, W)= Der(H,nW)
for every ne N,

(b) n(Der(H, W))=n if Der(H, W)+{0}.

(c) Der(H, W) has finite rank if H/Cy W is finitely generated.

Proof. (a) For re R, deDer(H, W) the map (rd):h~r(d(h)) is a derivation.
We obviously have nDer(H, W)cC Der(H,nW). For deDer(H,nW) we define
d e Der(H, W) by d(h) = w if d(h) =nw. d is well defined as W is torsion-free. Thus
we get nDer(H, W) =Der(H,nW).
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(b) Elements of Der(/, W) are divisible by m-numbers and elements of W not by
any n’-number (n’ is the set of primes not in 7).

(c) A derivation d of Der(H, W) restricted to C, W is a homomorphism. Hence
its kernel contains T= T(Cy W) and we get Der(H, W) =Der(H/T, W). So we may
assume T=E. The Fitting subgroup F of CyW is torsion-free nilpotent and
Cy W/F is finitely generated [9, 10.33]). Thus H/F is generated by {hF,..., h,F}
for suitable A; € H.

Using a Malcev-base {4, |,...,h,,} of F we put B={h,,..., h,,} and A= W8 the
set of all functions from B to W. As in (a) we may define an R-module structure
on A. Obviously A is an abelian group of finite rank, so it is enough to verify that
the R-homomorphism Der(H, W)—A: d~d| g is injective. But this follows from
the fact that d|r is a homomorphism and W is torsion-free.

7. #roof of Theorem F (split case)

We use the notation of Section 5. In order to apply Theorem E to the derivation
D: Q- Der(U, C) we have to find a submodule of finite index in Der(U, C) on which
P acts nilpotently.

Now U,=UNN centralizes C, so that we can regard C as a U/U,;-module and
we have Der(U;, C)=Hom(U,/T, C) with T/U,=T(U,/Uj) the torsion subgroup
of U, modulo its derived group. Furthermore by [4, VI8.1] the restriction map
Jj : Der(U, C)—Der(U,,C)=Hom(U, /T, C) has kernel

ker j = {de Der{U, C)|d|y, =0} =Der(U/U,,C).

The subgroups Z;=Z;(N)NU, form a central series of U, of length s, say. Direct
calculation now shows that P acts identically on the factors of the series {0} =
A;<---A,=Hom(U,/T, C) with

A;={BeHom(U,/T,C)| Z;T/T<ker B}.
Therefore we get
[Der(u, C), ,P] <ker j = Der(U/U,, C). (1)

Der(U/U,, C) contains the submodule Ider(U/U,,C)={d,:uU;~c"c™"'} of inner
derivations, which has finite index in Der(U/U,, C), say r [4, VI16.5] and which is
a Q-homomorphic image of C:

dIuU,) = (du® ' UDY = ) = c(c?) = d(uU)).
Thus P acts trivially on Ider(U/U,,C) and we get
[rDer(U, C), ;. P1={0}. @

By 6.3(c), rDer(U, C) has finite index; so we may apply Theorem i to the Derivation
D: QO+~ Der(U,C) and we can finish the proof of the theorem:



176 D. Kilsch

For every me M we have UIC™=VC™ for some ge Q. Hence for every 1e U
and m e N there exist an element ce C with & € U9%cC™ = VcC™ and elements u € U;
ve V; a, be C™ satisfying & =u%a=vch. Hence

(H(V) = D(@)@) = (W(V) = RUONE) = Giic, ) g ye=b""¢"cae C™.

Thus A(V) belongs to
() D(Q)+ Der(U,C™)= [} D(Q)+ mDer(U,C),

me ™ meN

which equals D(Q). But D(Q) is closed, so that 2(V) is an element of D(Q), 1.e. there

1.
exisis an element ¢ € O such that #(V)=Aa(UY). Finally # is injective {6.1) so tha
we get the desired equality U=V,

-

8. Proof of Theorem H

Using the arguments of Sections 5-7 there is no problem to give the detaiis of a
proof o1 Theorem H. In the induction step one uses the last non-trivial subgroup
M of the derived series of a torsion-free polycyclic subgroup of finite index in G.
[2, Theorem 1*] takes care of the fact that M is not necessarily a trivial P-module
for any subgroup P of finite index in Q. Instead of Theorem E cne applies Theorem
D or Grunewald and Segal’s Theorem 2 [2] to the derivation D: Q- Dor(U, M) in
the split case.

9. Example 1 and Example §

1 ¥ z
G= {(0 1 y) x,yEZ,zeZ[%]]
0 0 1

is a torsion-free nilpotent minimax group of class 2 with centre

1 0 2

C:{(O 1 0 zeZ[%]K.
0 0 1

) and a,z(

We put

-0 O

> {ieN).

e e R ]
S - O
—_ O N
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1 0 »
b'p6=3{0 1 ¢ ]lyez
0 0 1

the group C/b~1bC is isomorphic to the Priifer-2-group. Thus neither 5~'5% nor
bC are closed. __

All the elements ba; (i N) belong to b®, but their conjugacy classes are dif-
ferent. Furthermore the subgroups {(bg;) (i € Ny) arc pairwise non-conjugate, but
are conjugate in every finite image of G.

Because cf

10. Example 2 and Example 6

1 0 0 z w
01 0 y 0
N= 0o ¢ 1 x 0 x, ,oawelZl}]
0 0 01 0
00 0 0 1

and its subgroup M obtaired by putting w=0 are torsion-free abelian 2-radicable
groups whicl. are normahzed by the commuting matrices

4 0 0 0O

1
1
0
0

K
I
[ B B R

0
0
1
0

oo N o
_0 O 9

0

and the diagonal matrices f=diag(l,1,1,2,1) and y=diag(l,1,1,1,2). {, » and w
denote the matrices in N which have every non-diagonal entry zero apart from z=1,
y=1 and w=1, respectively.

By [5, Lemma] MA{f) and {w, y) are finitely presented and so are H=MA{a, )
and G=Ni{a, B, .

10.1. The elements nCzr (re —N) are pairwise not conjugacy separable in H:
)= {n*

contains 72 only if r=s. Furthermore, n~'#" contains {# and hence its closure
¢ZH1 So all the elements 7% belong to n* and are conjugate in every finite
quotient of H.

m 1 2

"\ mnezy={n""¢® " \mnez}

10.2. The subgroups U,=<}"1C2r) (re —N) are closed in G and pairwise not con-
jugacy separable in G:
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The subgroups L, are unipotent-free and hence closed in G [6, Theorem A]. By
10.1 all these subgroups are conjugate in every finite image of G but
UC = {(ync? y ' |i, j,k,neZ}
={o PPy i jknel}

.97 J rzj_lj . .
:{ynwk 2 k”nz é-nz i2 ll,j,k,ﬂGZ}

coniains yn¢Z only if r=s.

11. Example 3

We put b=(} }) and compute

o

By [6, Theorem A] this set is closed in G if and only if it is closed in F(G) = U(2, R).
Hence it is closed if and only if (R*)? is closed in R. But 17 is a square in the ring
of 2-adic numbers [10, II Théoréme 4] which is equal to the profinite completion
of R. Hence, (R*)* is not closed in R.

seR*}.

12. Example 4

The subgroups

oo 1 0 r
U=3{0 1 r)irezZ/pZ; and V,=4( 0 | r )|reZ/pZ
0 0 1 0 0 1

are conjugate in U(3,Z/p7). As every normal subgroup of finite index of G=
@,,p,,me U(3,7Z/pZ) contains almost all factors U(3,Z/pZ), its subgroups
U= @ U, and V=@ V,

pprune pprime

are conjugate in every finite quotient of G. But an element of G conjugating U and
I would have a non-trivial component in every factor U(3,Z/pZ), which is not
possible.
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